Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20616, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996473

RESUMO

Biological pathways between alcohol consumption and alcohol liver disease (ALD) are not fully understood. We selected genes with known effect on (1) alcohol consumption, (2) liver function, and (3) gene expression. Expression of the orthologs of these genes in Caenorhabditis elegans and Drosophila melanogaster was suppressed using mutations and/or RNA interference (RNAi). In humans, association analysis, pathway analysis, and Mendelian randomization analysis were performed to identify metabolic changes due to alcohol consumption. In C. elegans, we found a reduction in locomotion rate after exposure to ethanol for RNAi knockdown of ACTR1B and MAPT. In Drosophila, we observed (1) a change in sedative effect of ethanol for RNAi knockdown of WDPCP, TENM2, GPN1, ARPC1B, and SCN8A, (2) a reduction in ethanol consumption for RNAi knockdown of TENM2, (3) a reduction in triradylglycerols (TAG) levels for RNAi knockdown of WDPCP, TENM2, and GPN1. In human, we observed (1) a link between alcohol consumption and several metabolites including TAG, (2) an enrichment of the candidate (alcohol-associated) metabolites within the linoleic acid (LNA) and alpha-linolenic acid (ALA) metabolism pathways, (3) a causal link between gene expression of WDPCP to liver fibrosis and liver cirrhosis. Our results imply that WDPCP might be involved in ALD.


Assuntos
Caenorhabditis elegans , Drosophila melanogaster , Metabolismo dos Lipídeos , Hepatopatias Alcoólicas , Animais , Humanos , Consumo de Bebidas Alcoólicas/genética , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Etanol/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Cirrose Hepática/patologia , Hepatopatias Alcoólicas/metabolismo
2.
PLoS Genet ; 19(9): e1010893, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37733679

RESUMO

Brains are highly metabolically active organs, consuming 20% of a person's energy at resting state. A decline in glucose metabolism is a common feature across a number of neurodegenerative diseases. Another common feature is the progressive accumulation of insoluble protein deposits, it's unclear if the two are linked. Glucose metabolism in the brain is highly coupled between neurons and glia, with glucose taken up by glia and metabolised to lactate, which is then shuttled via transporters to neurons, where it is converted back to pyruvate and fed into the TCA cycle for ATP production. Monocarboxylates are also involved in signalling, and play broad ranging roles in brain homeostasis and metabolic reprogramming. However, the role of monocarboxylates in dementia has not been tested. Here, we find that increasing pyruvate import in Drosophila neurons by over-expression of the transporter bumpel, leads to a rescue of lifespan and behavioural phenotypes in fly models of both frontotemporal dementia and Alzheimer's disease. The rescue is linked to a clearance of late stage autolysosomes, leading to degradation of toxic peptides associated with disease. We propose upregulation of pyruvate import into neurons as potentially a broad-scope therapeutic approach to increase neuronal autophagy, which could be beneficial for multiple dementias.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Humanos , Animais , Demência Frontotemporal/genética , Doença de Alzheimer/genética , Neuroglia , Ácido Pirúvico , Drosophila , Glucose
3.
Brain Commun ; 3(2): fcab053, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33977265

RESUMO

Accumulation of amyloid beta peptides is thought to initiate the pathogenesis of Alzheimer's disease. However, the precise mechanisms mediating their neurotoxicity are unclear. Our microarray analyses show that, in Drosophila models of amyloid beta 42 toxicity, genes involved in the unfolded protein response and metabolic processes are upregulated in brain. Comparison with the brain transcriptome of early-stage Alzheimer's patients revealed a common transcriptional signature, but with generally opposing directions of gene expression changes between flies and humans. Among these differentially regulated genes, lactate dehydrogenase (Ldh) was up-regulated by the greatest degree in amyloid beta 42 flies and the human orthologues (LDHA and LDHB) were down-regulated in patients. Functional analyses revealed that either over-expression or inhibition of Ldh by RNA interference (RNAi) slightly exacerbated climbing defects in both healthy and amyloid beta 42-induced Drosophila. This suggests that metabolic responses to lactate dehydrogenase must be finely-tuned, and that its observed upregulation following amyloid beta 42 production could potentially represent a compensatory protection to maintain pathway homeostasis in this model, with further manipulation leading to detrimental effects. The increased Ldh expression in amyloid beta 42 flies was regulated partially by unfolded protein response signalling, as ATF4 RNAi diminished the transcriptional response and enhanced amyloid beta 42-induced climbing phenotypes. Further functional studies are required to determine whether Ldh upregulation provides compensatory neuroprotection against amyloid beta 42-induced loss of activating transcription factor 4 activity and endoplasmatic reticulum stress. Our study thus reveals dysregulation of lactate dehydrogenase signalling in Drosophila models and patients with Alzheimer's disease, which may lead to a detrimental loss of metabolic homeostasis. Importantly, we observed that down-regulation of ATF4-dependent endoplasmic reticulum-stress signalling in this context appears to prevent Ldh compensation and to exacerbate amyloid beta 42-dependent neuronal toxicity. Our findings, therefore, suggest caution in the use of therapeutic strategies focussed on down-regulation of this pathway for the treatment of Alzheimer's disease, since its natural response to the toxic peptide may induce beneficial neuroprotective effects.

4.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33593901

RESUMO

Reduced activity of insulin/insulin-like growth factor signaling (IIS) increases healthy lifespan among diverse animal species. Downstream of IIS, multiple evolutionarily conserved transcription factors (TFs) are required; however, distinct TFs are likely responsible for these effects in different tissues. Here we have asked which TFs can extend healthy lifespan within distinct cell types of the adult nervous system in Drosophila Starting from published single-cell transcriptomic data, we report that forkhead (FKH) is endogenously expressed in neurons, whereas forkhead-box-O (FOXO) is expressed in glial cells. Accordingly, we find that neuronal FKH and glial FOXO exert independent prolongevity effects. We have further explored the role of neuronal FKH in a model of Alzheimer's disease-associated neuronal dysfunction, where we find that increased neuronal FKH preserves behavioral function and reduces ubiquitinated protein aggregation. Finally, using transcriptomic profiling, we identify Atg17, a member of the Atg1 autophagy initiation family, as one FKH-dependent target whose neuronal overexpression is sufficient to extend healthy lifespan. Taken together, our results underscore the importance of cell type-specific mapping of TF activity to preserve healthy function with age.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Longevidade , Neuroglia/metabolismo , Neurônios/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Masculino , Neuroglia/citologia , Neurônios/citologia , Transcriptoma
5.
Hum Mol Genet ; 29(14): 2420-2434, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32592479

RESUMO

Alzheimer's disease (AD) is the most common form of dementia and the most prevalent neurodegenerative disease. Genome-wide association studies have linked PICALM to AD risk. PICALM has been implicated in Aß42 production and turnover, but whether it plays a direct role in modulating Aß42 toxicity remains unclear. We found that increased expression of the Drosophila PICALM orthologue lap could rescue Aß42 toxicity in an adult-onset model of AD, without affecting Aß42 level. Imbalances in the glutamatergic system, leading to excessive, toxic stimulation, have been associated with AD. We found that Aß42 caused the accumulation of presynaptic vesicular glutamate transporter (VGlut) and increased spontaneous glutamate release. Increased lap expression reversed these phenotypes back to control levels, suggesting that lap may modulate glutamatergic transmission. We also found that lap modulated the localization of amphiphysin (Amph), the homologue of another AD risk factor BIN1, and that Amph itself modulated postsynaptic glutamate receptor (GluRII) localization. We propose a model where PICALM modulates glutamatergic transmission, together with BIN1, to ameliorate synaptic dysfunction and disease progression.


Assuntos
Doença de Alzheimer/genética , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteínas de Drosophila/genética , Receptores Ionotrópicos de Glutamato/genética , Fatores de Transcrição/genética , Proteínas Vesiculares de Transporte de Glutamato/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Comportamento Animal , Drosophila melanogaster/genética , Fármacos Atuantes sobre Aminoácidos Excitatórios , Humanos , Proteínas Monoméricas de Montagem de Clatrina/genética , Proteínas do Tecido Nervoso/genética , Fragmentos de Peptídeos/genética , Transmissão Sináptica/genética
6.
Aging Cell ; 19(5): e13137, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32291952

RESUMO

Inhibition of signalling through several receptor tyrosine kinases (RTKs), including the insulin-like growth factor receptor and its orthologues, extends healthy lifespan in organisms from diverse evolutionary taxa. This raises the possibility that other RTKs, including those already well studied for their roles in cancer and developmental biology, could be promising targets for extending healthy lifespan. Here, we focus on anaplastic lymphoma kinase (Alk), an RTK with established roles in nervous system development and in multiple cancers, but whose effects on aging remain unclear. We find that several means of reducing Alk signalling, including mutation of its ligand jelly belly (jeb), RNAi knock-down of Alk, or expression of dominant-negative Alk in adult neurons, can extend healthy lifespan in female, but not male, Drosophila. Moreover, reduced Alk signalling preserves neuromuscular function with age, promotes resistance to starvation and xenobiotic stress, and improves night sleep consolidation. We find further that inhibition of Alk signalling in adult neurons modulates the expression of several insulin-like peptides, providing a potential mechanistic link between neuronal Alk signalling and organism-wide insulin-like signalling. Finally, we show that TAE-684, a small molecule inhibitor of Alk, can extend healthy lifespan in Drosophila, suggesting that the repurposing of Alk inhibitors may be a promising direction for strategies to promote healthy aging.


Assuntos
Quinase do Linfoma Anaplásico/metabolismo , Longevidade , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Animais , Senescência Celular/efeitos dos fármacos , Drosophila , Feminino , Longevidade/efeitos dos fármacos , Masculino , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos
7.
Brain Neurosci Adv ; 3: 2398212819883081, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32166184

RESUMO

Ethanol is a psychoactive substance causing both short- and long-term behavioural changes in humans and animal models. We have used the fruit fly Drosophila melanogaster to investigate the effect of ethanol exposure on the expression of the Gαq protein subunit. Repetitive exposure to ethanol causes a reduction in sensitivity (tolerance) to ethanol, which we have measured as the time for 50% of a set of flies to become sedated after exposure to ethanol (ST50). We demonstrate that the same treatment that induces an increase in ST50 over consecutive days (tolerance) also causes a decrease in Gαq protein subunit expression at both the messenger RNA and protein level. To identify whether there may be a causal relationship between these two outcomes, we have developed strains of flies in which Gαq messenger RNA expression is suppressed in a time- and tissue-specific manner. In these flies, the sensitivity to ethanol and the development of tolerance are altered. This work further supports the value of Drosophila as a model to dissect the molecular mechanisms of the behavioural response to alcohol and identifies G proteins as potentially important regulatory targets for alcohol use disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...